您现在的位置是:首页 > 新闻 > 正文
七年级数学有理数单元测试题(初一有理数单元的解题技巧和数学思想方法方面)
2022-09-07 05:10新闻
简介 有理数知识点小结 一、正数和负数的有关概念 (1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。注意:①字母a可以表示任意数,当a表示正数时...
有理数知识点小结
一、正数和负数的有关概念
(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
(2)正数和负数表示相反意义的量。比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃ (别忘加单位)
(3) 0是正数和负数的分界线,0既不是正数,也不是负数。
0不在仅仅表示没有,也表示实实在在的实物,比如0摄氏度,海拔0米。
二、有理数的概念及分类
有理数是整数和分数的统称。通常有两种分类:
注意:1.引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。2.有限小数和无限循环小数都是分数
总结:①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
③正有理数、0统称为非负有理数
④负有理数、0统称为非正有理数
三、有关数轴
⒈数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;
⑶最大的负整数是-1,无最小的负整数
5.数轴上点的移动规律
根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。(注意移动方向)
数轴经常和绝对值一起出题,特别是判断绝对值里面的符号。对此,我们一般用赋值法,就是数轴上的字母,根据实际情况给他赋一个具体的数,这样学生在解题时会感觉容易很多。
四、绝对值与相反数和倒数
(1)相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);
⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是
-(-5),化简得5)
5.相反数的表示方法
⑴一般地,数a 的相反数是-a,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)
当a<0时,-a>0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
6.多重符号的化简 (同号为正,异号为负)
多重符号的化简规律若记数单位前面的数是整数,则这个近似数就精确到“记数单位”位;若记数单位前面是小数,要先将这个近似数还原成原来的数,再看最后一位在原数中的位置.如近似数13亿,就精确到亿位;近似数2.43万,就精确到百位.用科学记数法形式表示的近似数, 在确定精确到哪一位时,同样要把它还原成原数,再从左到右看中的最后一位在原数的什么位置上,就说这个近似数精确到哪一位.如还原成原数为369.0,最后一位“0”在原数的十分位上,所以精确到十分位.
总结:比较两个有理数大小的方法有:
(1) 根据有理数在数轴上对应的点的位置直接比较;
(2) 根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;
(3) 做差法:a-b>0 ⇔a>b;
(4) 做商法:a/b>1,b>0 ⇔a>b.
(5)利用绝对值比较大小
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
典例分析:
出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-3,+14,-11,+10,-12,+4,-15,+16,-18.
(1) 将最后一名乘客送到目的地时,小石距下午出发地点的距离是多少千米?
(2) 若汽车耗油量为a升/千米,这天下午汽车耗油共多少升?
分析:(1)求已知10个数的和,即得小石距下午出发地点的距离;
(2)要求耗油量,需求出汽车一共走的路程,与所行的方向无关,即求出10个数的绝对值的和,然后乘以a升即可。
注意两问的区别。
解:(1)(+15)+(-3)+(+14)+(-11)+(+10)+(-12)+(+4)+(-15)+(+16)+(-18)
=(15+14+10+4+16)+【(-3)+(-11)+(-12)+(-15)+(-18)】
=59+(-59)
=0(千米)
(2)
=118(千米)
118×a=118a(升)
答:(1)将最后一名乘客送到目的地时,小石距下午出发地点的距离是0千米,即回到出发地点;
(2)若汽车耗油量为a升/千米,这天下午汽车耗油共118a升。
典例分析:
在有关乘方的计算中,最易出现错误的是“符号问题”,解决问题的关键是准确理解幂的概念,头脑时刻保持清醒,不要随意的增减和变换符号,更不要“跳步”,严格按照运算法则进行。
解:
典例分析:
1、用科学记数法表示56420000万.
分析:需要注意以下两点:①在一些数据中会出现“万、亿”需引起重视;②科学记数法有其表示的标准形式:,其中,n为正整数。
解:56420000万=564200000000=
典例分析:
(1) 与原点距离等于4的点有几个?其表示的数是什么?
(2) 在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是什么?
分析:对于初学者,我们可以画出数轴,从数轴上观察,与原点距离等于4的点有两个,它们分别位于原点的两侧,它们所表示的数是+4和-4.千万不要忽略了原点左边的点即表示-4的点。这样第(2)问迎刃而解。
解:(1)与原点距离等于4的点有两个,它们表示的数是+4和-4.
(2)在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是-1和-5.
3、-(-3)的相反数是______。(解析:先化简-(-3),再去求出计算结果的相反数)
典例分析:
已知,求x,y的值。
分析:此题考查绝对值概念的运用,因为任何有理数a的绝对值都是非负数,即。
所以,而两个非负数之和为0,则这两个数均为0,所以可求出x,y的值。
解:∵ 又
∴,即
∴
典例分析:
如果规定△表示一种运算,且a△b=,求:3△(4△)的值.