您现在的位置是:首页 > 新闻 > 正文

小学数学教学论文5篇(谁能给我篇数学小论文)

2022-09-08 22:00新闻

简介 最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,...

最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。

最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。

但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。

[经典例题]

例1用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?

[分析]一个10尺长的竹竿应有三种截法:

(1)3尺两根和4尺一根,最省;

(2)3尺三根,余一尺;

(3)4尺两根,余2尺。

为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。

例3把25拆成若干个正整数的和,使它们的积最大。

[分析]先从较小数形开始实验,发现其规律:

把6拆成3 3,其积为3×3=9最大;

把7拆成3 2 2,其积为3×2×2=12最大;

把8拆成3 3 2,其积为3×3×2=18最大;

把9拆成3 3 3,其积为3×3×3=27最大;……

这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3 3 3 3 3 3 3 2 2,其积37×22=8748为最大。

例5甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产900套西服;乙厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?

[分析]根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为23;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。

两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产月生产1200件上衣,那么乙厂全月可生产上衣1200÷=2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷=2250条。

为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服

(2100 60)-(900 1200)=60套

例7今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?

[分析]因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人流每次取P颗,谁最后取完谁获胜。

[解]乙有必胜的策略。

[说明](1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策

,关键是看他们所面临的“情形”;

(2我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。

若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。

例8有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?

[分析]为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房。

Tags:小学 / 数学 / 论文 / 谁能 / 给我 / 教学论文 / 

中国山脉图(中国山脉分级) 微信支付商户(如何申请小程序支付(商户号)) 不懂就要问教学设计(本人新高一,课上有好好听课,但就是听不 八上物理知识点总结(初一物理上册知识点) 中医针灸穴位速记歌诀(学针灸,背经穴歌有什么好方法吗) 中国山水画国画精品(当代山水画坛山水画的既有气势,又有自己 李白生平简介(李白生平大事年表) 道德经诵读(你觉得学校要求孩子从一年级开始背诵《诗经》、《 盲打键盘指法练习(数字盲打的指法是什么样的) RCS概念是什么(海运psl是什么费用)